Probe Hole Drilling and Pre-Excavation Grouting

2016 TUNNELING SHORT COURSE
9th Annual Breakthroughs in Tunneling
Short Course
September, 12-15, 2016
Agenda

1) Chattahoochee Tunnel, Atlanta, GA
2) South River Tunnel, Atlanta, GA
3) Rondout West Branch Bypass Tunnel, Newburgh, NY
Probe Hole Drilling and Pre-Excavation Grouting

Probe Drilling:
Drill, maintain, and monitor probe holes in the shaft and tunnel excavations to detect the presence of groundwater inflows.

Pre-Excavation Grouting:
Injection of cementitious Grout through holes drilled in advance of the excavation to control water inflows.
Chattahoochee, Atlanta

Grouting to reduce water inflows – Pre-excavation & post lining installation

- Approximately 50,000 LF tunnel, 18'-4" diameter (excavated)
- Hard Rock, Main beam TBM excavation w/ rock bolt support
- Metamorphic rock – Schist and Gneiss, 20-30ksi.
- Groundwater inflow into tunnel controlled by fracture flow in hard rock
- 75% of the tunnel was lined with CIP concrete to final diameter of 16’
Chattahoochee - PEG

Probe Drilling - Eleven tunnel sections – 300lf to 1600lf
2ea 2-1/4” Probheoles 60-100lf/ea
PEG Grout criteria – 0.2gpm/lf of probe
If grout=>Two additional holes
Chemgrout grout plant - Type 3 Cement
Verification hole drilled after initial set of grout
PEG - Total 230hrs (2wks)

Water inflows:
- Post mining steady state water inflow 1,410gpm

Concrete Liner 37,500lf w/ contact grouting
- Water inflow post concrete 875gpm
- Requirement <200gpm
Chattahoochee – Secondary Grouting

- Secondary grouting based on face mapping – focused on water bearing fractures in the rock.
- Duration:
 10.5mths - 2x10hr shifts covering 33,000lf of lined tunnel
- Equipment:
 2 grout gantries w/ Chemgrout CG600 grout plants
- Grout:
 Nittetsu SuperFine Cement
 US Grout Type V Standard Grout
- Total
 Cement total 1,250,000lbs
- Water inflows:
 Post secondary grouting 185gpm
South River Tunnel, Atlanta

Grouting to reduce water inflows – Pre-excavation & modified contact grouting post liner installation
 • Approximately 8,640 LF tunnel, 16’-4” diameter (excavated)

• Hard Rock, Main-Beam TBM excavation w/ rock bolt support
• 100% of the tunnel was lined with CIP concrete to final diameter of 14’
• Surface grouting in advance of tunnel drive
South River Tunnel, Atlanta

Primary Grout Hole
Secondary Grout Hole
Tertiary Grout Hole (Location As Directed)
South River – Probe & PEG

Probe Drilling – 2x100-140lf (typical) – 100% of drive w/ 20ft overlap
Prediction un-grouted (w/o PEG) 2500gpm — 1500gpm after grouting
Trigger 10gpm/hole – 0.1gpm/lf
PEG Equipment: Grout plant on rail – Moyno progressing cavity pumps
PEG Material: Type III Cement – 94lbs bags
South River Tunnel, Atlanta

Total 14 grouting events:
- Mob/Setup 57hrs
- Drill Time 196hrs
- Total Grout time 217hrs
- Demob 61Hrs
 Total 530Hrs (22days=1mth)

Total 5,847 bags = 550,000lbs

Post Mining Water inflow – 700gpm (incl. shaft)
TBM Tunnel Max 930gpm – sustained 610gpm
South River Tunnel, Atlanta

Modified Contact Grout through concrete liner:
6mth modified contact grouting – 1845 holes – 384 hrs grout injection
Dayshift only
Modified contact grout pumped from surface
6,175 bags (94 lbs bags)

Post Modified Contact Grouting:
Final <100 gpm
Contract <50 gpm

Chemical Grouting:
Final 17 gpm (after chemical)
Geology

Tunnel Reaches

• Reach 1 - 2,560lf – Shale (Normanskill Formation)
• Reach 2 - 3,900lf – Limestone & Dolomite (Wappinger Formation)
• Reach 3 – 3,500lf – Limestone & Dolomite (Wappinger Formation)
• Reach 4 – 2,540lf – Shale (Mount Merino Formation)
- **Groundwater Head**
 - Ranges from 675 ft to 875 ft

- **Max. Heading Inflows**
 - **Ungrouted**
 - TBM: 250 – 1300 gpm

- **Solution Cavities**
 - 3 – 30 ft, 5 – 30 Cy of flowing material
 - Reach 2: 3ea
 - Reach 3: 6ea

Table:

<table>
<thead>
<tr>
<th>Location</th>
<th>Maximum</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaches 1 and 4</td>
<td>34,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Reaches 2 and 3</td>
<td>54,000</td>
<td>35,000</td>
</tr>
</tbody>
</table>
D&S PROBEHOLES

Section 31 71 17 – Excavation by Drill and Blast
3.07.A. Drill, maintain, and monitor probe holes in the shaft and tunnel excavations to detect the presence of groundwater inflows in accordance with Section 31 73 14

Section 31 73 14 – Shaft and Tunnel Grouting
Prior to probe or grout hole drilling, install standpipe/drill through packer
Probe and grout holes that do not stay open through the above techniques shall be downstaged to stabilize and advance the holes.
Shale Units: Min. 2 probeholes
Shale Units within 200’ of RWBT: Min. 4 probeholes
Wappinger: Min. 4 probeholes
TBM Probeholes

Section 31 71 19 TBM Excavation
Probe holes overlapped minimum of 20 feet.
Probe holes outside the tunnel perimeter shall be backfilled with grout
Probe holes shall be monitored and recorded by the Contractor
 o 1. Hole ID;
 o 2. Start/end time for each drill rod;
 o 3. Water inflows encountered by hold depth;
 o 4. Rod drop or rapid advancement due to voids or open apertures;
 o 5. Bound or stuck drill steel and depth of occurrence;
 o 6. Plugged steel;
 o 7. Collapsing hole;
 o 8. Flowing ground.
Specification – TBM Tunnels

31 73 14 Shaft & Tunnel Grouting

- Shale Units: 0.3 gpm/ft or 30 gpm/feature
- Shale Units within 200’ of RWBT: 0.2 gpm/ft or 20 gpm/feature
- Wappinger Group: 0.3 gpm/ft or 30 gpm/feature
- PEG – Materials: Type III Cement, Ultrafine Cement
- Double-acting piston pump: Max pressure capacity of 1,000 psi with maximum pumping capacity of 400 cubic feet per hour (50 gpm) at a pressure of 350 psi.
- Two (2) pumps and plants available to treat two (2) holes simultaneously.
- Refusal: less than 0.5 cubic foot of Grout injected over a two (2) minute period at the specified maximum injection pressure and Grout consistency.
- Max. 30,000#/100ft length of grouthole
- 6hr grout cure before advancing excavation
Drill & Blast – Grout Hole Layout

NOTE:
LOOKOUT TO BE 7.5 deg
HOLE DEPTH TO BE 72 ÷ 75
VERTICAL FEET

24 ea GROUT HOLES
Drill & Blast – Grout Hole Layout

TAIL TUNNEL

GANTRY CHAMBER
TBM PEG Port Openings
TBM Cutter Head – Drill Positions

- Drilling positions
 - Two cutter head positions allow drilling through all 16 cutter head drill ports
Drill & Shoot Grout Equipment

- Triplex Pump
 - Gear 1 = 725psi @ 52 gpm
 - Gear 2 = 942psi @ 39 gpm
 - Gear 3 = 1450psi @ 26 gpm
Packer, Flow Meter
TBM Drilling Positions
TBM Drilling Equipment

W50 & W70
DTH Hammers
TBM PEG Equipment

Hany Agitator HRW1200

<table>
<thead>
<tr>
<th>Specification</th>
<th>HRW1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable content</td>
<td>l 1050</td>
</tr>
<tr>
<td>Electric motor 50 Hz</td>
<td>kW 1.5</td>
</tr>
<tr>
<td>Electric motor 60 Hz</td>
<td>kW 1.8</td>
</tr>
<tr>
<td>Speed 50 Hz</td>
<td>mm-1 20</td>
</tr>
<tr>
<td>Speed 60 Hz</td>
<td>mm-1 31</td>
</tr>
</tbody>
</table>

Hany Grout Pump ZMP 726V

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZMP 726V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing Pump</td>
<td>TMP 22</td>
</tr>
<tr>
<td>Production approx. (W/C = 1)</td>
<td>m³/h 0</td>
</tr>
<tr>
<td>Circulation capacity</td>
<td>l/min 1400</td>
</tr>
<tr>
<td>Usable content</td>
<td>l 550</td>
</tr>
<tr>
<td>Max. particle size</td>
<td>mm 8</td>
</tr>
<tr>
<td>Electric motor 50 Hz</td>
<td>kW 9</td>
</tr>
<tr>
<td>Electric motor 60 Hz</td>
<td>kW 11</td>
</tr>
</tbody>
</table>

Hany Mixer HCM 610

<table>
<thead>
<tr>
<th>Specification</th>
<th>HCM 610</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Shear Colloidal Mixer</td>
<td>HCM 610</td>
</tr>
<tr>
<td>Mixing Pump</td>
<td>TMP 22</td>
</tr>
<tr>
<td>Production approx. (W/C = 1)</td>
<td>m³/h 0</td>
</tr>
<tr>
<td>Circulation capacity</td>
<td>l/min 1400</td>
</tr>
<tr>
<td>Usable content</td>
<td>l 550</td>
</tr>
<tr>
<td>Max. particle size</td>
<td>mm 8</td>
</tr>
<tr>
<td>Electric motor 50 Hz</td>
<td>kW 9</td>
</tr>
<tr>
<td>Electric motor 60 Hz</td>
<td>kW 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification</th>
<th>ZMP 726V</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Shear Colloidal Mixer</td>
<td>HCM 610</td>
</tr>
<tr>
<td>Mixing Pump</td>
<td>TMP 22</td>
</tr>
<tr>
<td>Production approx. (W/C = 1)</td>
<td>m³/h 0</td>
</tr>
<tr>
<td>Circulation capacity</td>
<td>l/min 1400</td>
</tr>
<tr>
<td>Usable content</td>
<td>l 550</td>
</tr>
<tr>
<td>Max. particle size</td>
<td>mm 8</td>
</tr>
<tr>
<td>Electric motor 50 Hz</td>
<td>kW 9</td>
</tr>
<tr>
<td>Electric motor 60 Hz</td>
<td>kW 11</td>
</tr>
</tbody>
</table>
Pre-Excavation Grouting

- Trigger 0.3gpm/ft-probe, 30gpm/feature
- Less than 200ft from RWBT - Trigger 0.2gpm/ft-probe, 20gpm/feature
- Drilling & Grouting thru Stand Pipe/Collar pipe
- Down-stage grouting at high flows
- Max. injection pressure 1.5psi/vf of cover (Pump max. 1,000 psi), Min. 50psi above hydrostatic
Grout Mixes

Portland Type III Cement
Microfine Cement
Ultrafine Cement
Admixture—Rheobuild 1000
Sodium Silicate

FIGURE 5.8 Grain size distribution of various ultrafine cements.
Questions?

2016 TUNNELING SHORT COURSE
9th Annual Breakthroughs in Tunneling Short Course
September, 12-15, 2016